Biology 123 General Biology II (3 credits) Wiles & Staff

Lecture - Monday AND Wednesday 12:45-2:05 pm OR 3:45-5:05 pm Giff Aud

Course Description: The second of a two-course sequence comprising a survey of major biological concepts ranging from the molecular level to global ecology. Units within Biology 123 include biodiversity, plant structure and function, human and comparative animal anatomy and function, ecology, and evolution, which is the central and unifying concept of biology and the framework around which the understanding of other concepts in this course is constructed.

Required Materials:
Exams: 4 per semester (3 during semester, 1 during final exam week); multiple choice; essays, quizzes, papers and reports in lab/recitation section.
Class size: 750 limit
Frequency of Offering: Each Spring semester

Biology 124 General Biology II Laboratory (1 credit) Wiles & Staff

Students registered for Bio 124 MUST also register for Bio 123.

Course Description: Laboratory course associated with BIO 123. Includes inquiry-based exploration and practical application of concepts discussed in BIO 123. One laboratory session per week.

Required Materials:
Class size: 24 students per section, (384 in total)
Frequency of Offering: Each Spring semester
Biology 217
Anatomy & Physiology II (4 credits) Sweet

<table>
<thead>
<tr>
<th>Lecture section:</th>
<th>Lab sections:</th>
<th>Recitation sections:</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 MW 12:45-2:05</td>
<td>002 T 8:00-10:00 308 LSC</td>
<td>005 M 8:00-9:20 300 LSC</td>
</tr>
<tr>
<td>003 T 10:20-12:20 308 LSC</td>
<td>004 W 8:00-10:00 308 LSC</td>
<td>006 Th 5:00-6:20 300 LSC</td>
</tr>
<tr>
<td>008 W 10:35-12:35 308 LSC</td>
<td>010 W 3:45-5:45 308 LSC</td>
<td>007 F 12:45-2:05 300 LSC</td>
</tr>
<tr>
<td>009 Th 5:00-6:20 214 LSC</td>
<td>001 LSC</td>
<td>011 F 12:45-2:05 214 LSC</td>
</tr>
</tbody>
</table>

Course Description: A continuation of the BIO 216 lecture and laboratory course studying the structure and function of human tissues, organs and systems. The endocrine, respiratory, cardiovascular, digestive and reproductive systems and metabolism and energetics will be covered. Laboratories will include bench top and interactive computer experiments, anatomy, histology and non-invasive experiment on human subjects. This course cannot be used to fulfill the requirements toward a biology major.

Textbooks: Seeley’s Anatomy & Physiology, Van Putte, Regan & Russo, 10th Ed.

Prerequisites: Bio 121-123 or equivalent

Examinations: Midterm & Final, plus weekly quizzes

Class size: 96

Frequency of Offering: Spring semesters

Biology 305
Integrative Biology Lab (3 credits) Maine/Lewis/Staff

<table>
<thead>
<tr>
<th>001 Lecture M 10:35-12:05</th>
<th>002 Lab T 12:30-4:30 146 LSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>003 Lab T 12:30-4:30 148 LSC</td>
<td>004 Lab W 12:45-4:45 146 LSC</td>
</tr>
<tr>
<td>005 Lab W 12:45-4:45 148 LSC</td>
<td>006 Lab Th 12:30-4:30 146 LSC</td>
</tr>
<tr>
<td>007 Lab Th 12:30-4:30 148 LSC</td>
<td>008 Lab F 12:45-4:45 146 LSC</td>
</tr>
<tr>
<td>009 Lab F 12:45-4:45 148 LSC</td>
<td></td>
</tr>
</tbody>
</table>

Course Description: Provides students with early laboratory experience, presenting a quantitative, integrated view of subcellular, cellular, developmental, organismal, and ecosystem/environmental perspectives on biology.

Prerequisite: Bio 121 or equivalent and Bio 326 or Bio 327 or Bio 345
Biology 317
Anatomy & Physiology II for Bio Majors (4 credits)
Sweet

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Lecture</td>
<td>MW</td>
<td>12:45-2:05</td>
<td>001 LSC</td>
</tr>
<tr>
<td>002</td>
<td>Lab</td>
<td>F</td>
<td>12:45-3:45</td>
<td>308 LSC</td>
</tr>
<tr>
<td>003</td>
<td>Lab</td>
<td>F</td>
<td>8:25-11:25</td>
<td>308 LSC</td>
</tr>
</tbody>
</table>

Course Description: This Anatomy & Physiology II course is a 300-level course for Biology & Biochemistry majors. It is a 4-credit course, of which 3 credits can be applied to the Biology major, unlike BIO 217. This class will have the same lecture room and time (Monday & Wednesdays 12:45-2:05 p.m.) as BIO 217. Students in the BIO 317 class will have weekly quizzes and midterm and final exams, as will those in BIO 217. However, the students registered for BIO 317 will have a joint laboratory and recitation section on Fridays from 9:30 am to 12:30 pm or 12:45 to 3:45 pm. These sections will not be the same as those laboratory and recitation sections in BIO 217. They will include a cat dissection, histology and other activities appropriate for a 300-level course. Understanding of laboratory material will be evaluated with 2-3 laboratory practicals.

Textbooks: Seeley's Anatomy & Physiology, VanPutte, Regan & Russo, 10th Ed.
A Guide to Anatomy & Physiology Lab, Rust, and Mammalian Anatomy: The Cat, Fishbeck
Prerequisites: Bio 121-123 or equivalent
Examinations: Midterm & Final, plus weekly quizzes & 3 lab practical exams.
Class size: 48

Biology 326
Genetics (3 credits)
Belote

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TTh</td>
<td>11:00-12:20</td>
<td>HBC Gifford Aud</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Description: Principles of inheritance, structure and synthesis of nucleic acids and proteins, microbial genetics, recombinant DNA technology and introduction to genomics.

Textbook: TBA
Prerequisites: Bio 121; Che 106
Class size: 350
Frequency of Offering: Each Spring semester

Biology 355
General Physiology (3 credits)
Tupper

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TTh</td>
<td>8:00-9:20</td>
<td>105 LSC</td>
<td></td>
</tr>
</tbody>
</table>

Course Description: A lecture course on the physiology of mammals including circulation, kidney function, nervous system, sensory systems, muscle, cardiac function and digestion.

Prerequisites: Bio 121; Che 106, 116
Class Size: 100
Biology 360
Biology Laboratory Assistant
(1 credit)
Wiles

TBA
TBA
TBA

Course Description: Students who have completed an upper-division 3-credit hour lab may receive one credit hour for assisting in the teaching of laboratories. This opportunity is especially appropriate for students considering teaching careers. May be repeated once for credit.

Textbook: None
Prerequisites: Permission of instructor in advance.
Examinations: None
Grade: A-F based upon participation & performance
Frequency of Offering: Each semester

Biology 400/600-001
Seminar in Neurotoxicology
(3 credits)
J. Hewett

TTh
11:00-12:20
214 LSC

Course Description: This course will explore the effects of poisons on nervous system function through the primary literature in the field. Discussions, seminars, and writing assignments will address function of the nervous system at the molecular, cellular, and systems levels.

Prerequisite: BIO/NEU 211 & BIO 327

Biology 400/600-004
Food for Thought: Brain Bioenergetics
(3 credits)
Staff

WF
2:15-3:45
126 LSC

Course Description: Our brains use ~20% of the energy we consume. In this class we will explore how the brain regulates its energy demands. We will also focus on how brain bioenergetics change during neurological disorders like Alzheimer’s and Parkinson’s disease.

Biology 400/600-007
Evolutionary Genetics
(3 credits)
Friedman

TTh
2:00-3:20
126 LSC

Course Description: Complex traits are features whose properties are controlled by many genes and whose inheritance does not follow the simple rules of Mendelian genetics, mostly due to the role of environmental variation in affecting the phenotype. This seminar course will use recent literature and student-led discussions and presentations along with writing assignments to understand the significance of complex traits and explore current methods. Student will learn how genetic and genomic approaches are used to understand the interaction between genotype and environment in producing a phenotype. Topics will range from disease-related traits in humans to plant breeding and agriculture, with model systems ranging from mice to maize.

Prerequisite: BIO 326 & 345
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 400/600-009</td>
<td>Global Change Biology</td>
<td>3</td>
<td>Frank/Fridley</td>
</tr>
<tr>
<td>TTh</td>
<td>9:30-10:50</td>
<td>300 LSC</td>
<td></td>
</tr>
</tbody>
</table>

Course Description: This course will explore the key drivers of global change – global warming, biodiversity and habitat loss, biological invasions, emergent diseases, industrial pollution – and how life on Earth may respond over the next century. The course will rely heavily on readings and open discussion. Students will gain an understanding of the fundamental scientific issues underlying global change and be able to debate pertinent social and political themes within a scientific context.

Prerequisite: BIO 345

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 400-10/600-10</td>
<td>Biology of Adaptive Behaviors</td>
<td>3</td>
<td>Gold</td>
</tr>
<tr>
<td>MW</td>
<td>3:45-5:05</td>
<td>105 LSC</td>
<td></td>
</tr>
</tbody>
</table>

Course Description: Behavioral adaptations based on individual experiences give animals the ability to use their pasts to solve new problems, an ability that can be obviously important to an animal's survival. This course will examine behavioral plasticity and the brain mechanisms responsible for the changes in behavior. Interestingly, there appears to be considerable conservation across much of the animal kingdom of basic biological mechanisms that mediate behavioral and brain plasticity. The class will include information that crosses several levels of analysis, from the organism, to brain systems, to neurons, to synapses, to biochemical mechanisms. The class will also consider information about memory dysfunctions as seen in aging, dementia, and retardation in humans and in laboratory model animals such as rats and mice. The format will be lecture/discussion sessions with evaluations of student performance based on participation, writing assignments, and exams.

There are no specific prerequisites for this course. However, prior completion of at least one of the following classes listed is expected: Bio 327 Cell Biology, Bio 326 Genetics, Bio 211 Intro to Neuroscience, Psy 223 Biopsychology, Bio 355 General Physiology.
Biology 405 Introduction to Field Biology Laboratory (4 credits) Segraves
T 2:00-4:50 306 LSC

Course Description: Scientific methods and experimental design. Intensive field research conducted during spring break at the Archbold Biological Station in Florida. Design, implement, analyze your own research project. Travel to ecosystems discussed in class.

Active participation in discussions, exercises, and projects is strongly encouraged. Participation is a component of the course grade. There will be two formal team presentations focused on the research projects. The first will be on the proposed project, and the second will be on the results of the completed project. Details of the presentations will be discussed in class. A major component of the course will be conducted at the Archbold Biological Station in Lake Placid, Florida. Participation in the field trip for its full duration is required. Students are encouraged to use creativity while keeping a field notebook. Daily notes pertaining to scientific observations and data collection will be kept during the field trip. Field books may be either bound lab notebooks or they may be electronic versions enhanced with digital images, drawings, or sound recordings. Appropriate content and format will be discussed in class. Students will design, implement, and write-up team projects. All projects will be conducted at the field station. Details of the research project will be discussed in class.

Once students have successfully completed this course, they will be better able to: (1) describe scientific methodology and statistics, (2) plan and implement experiments in the field, (3) distinguish the major ecosystems of Florida and explain how humans have impacted each ecosystem, (4) write a scientific manuscript for publication in an ecological journal, (5) prepare and deliver oral presentations on a scientific research project, and (6) keep a scientific journal.

Prerequisites: BIO 121, Consent of Instructor Required
Class size: 11

Biology 407/607 Advanced Neuroscience (3 credits) S. Hewett/SUNY Faculty
TTh 9:30-10:50 011 LSC

Course Description: An advanced introduction to neuroscience taught at the upper undergraduate or beginning graduate student level. The course spans the anatomy, physiology and chemistry of the nervous system, from the molecular to the cellular and systems level. Topics include: neurons and electrochemical and biophysical properties of neurons, neurochemistry, sensory and motor systems, neural plasticity and development. It is a required course for students enrolled in the Neuroscience ILM. It is strongly recommended that the student have completed either BIO 211 (Introduction to Neuroscience) or Psy 223 (Biopsychology) prior to enrolling in the course.

Biology 409 General Microbiology (4 credits) Staff

<table>
<thead>
<tr>
<th>Section</th>
<th>Lecture</th>
<th>Days</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Lecture</td>
<td>MWF</td>
<td>11:40-12:35</td>
<td>1-019 CST</td>
</tr>
<tr>
<td>002</td>
<td>Lab</td>
<td>MW</td>
<td>12:45-2:05</td>
<td>208 LSC</td>
</tr>
<tr>
<td>003</td>
<td>Lab</td>
<td>MW</td>
<td>2:15-3:35</td>
<td>208 LSC</td>
</tr>
<tr>
<td>004</td>
<td>Lab</td>
<td>MW</td>
<td>12:45-2:05</td>
<td>306 LSC</td>
</tr>
</tbody>
</table>

Course Description: Biology 409 is a lecture and laboratory course which introduces students to the biology of microorganisms. Major emphasis is on bacteriology, with some lectures devoted to viruses, protozoa, algae and fungi. Topics include structure of bacteria, energetics, bacterial genetics, ecology of bacteria and host-parasite relationships. Pathogenic microorganisms, public health, and immunology are reviewed in General Microbiology, but this course is not oriented toward medical microbiology.

The laboratory emphasizes the basic skills necessary to isolate, cultivate and identify microorganisms.

Textbooks: TBA **Frequency of Offering:** Each Spring semester
Prerequisites: Core courses; plus Organic Chemistry (concurrently); Juniors & Seniors only.
Exams: Three lecture exams plus lab practical. Term paper required.
Class size: 30

Biology 419 Jr/Sr Thesis Seminar (1 credit) Segraves/Belote

<table>
<thead>
<tr>
<th>Section</th>
<th>Days</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>5:00-6:00 pm</td>
<td>106 LSC</td>
</tr>
</tbody>
</table>

Course Description: A discussion-student presentation format course designed to introduce highly qualified students to biological research. Students present progress reports on their thesis research. The course is designed to open communication among people with interests in biological research.

Textbook: None
Prerequisites: Acceptance into a thesis program in Biology (Honors or Distinction).
Level of Presentation: Junior-Senior: must be taken all four semesters
Class size: Varies
Frequency of Offering: Every semester

Biology 421 Capstone Seminar in Biotechnology (3 credits) Coleman

<table>
<thead>
<tr>
<th>Section</th>
<th>Days</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TTh</td>
<td>9:30-10:50</td>
<td>243 LSC</td>
</tr>
</tbody>
</table>

Course Description: This is a seminar course for upper-level students, particularly (but not limited to) those completing a major in Biotechnology. Students will evaluate scientific papers, current news stories, and biotechnology related issues. This evaluation will occur through reading, oral presentations, written assignments, and class discussion.

Biology 422 Bioinformatics for Life Scientists (3 credits) Welch

<table>
<thead>
<tr>
<th>Section</th>
<th>Days</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>M</td>
<td>12:45-1:50</td>
<td>156 LSC</td>
</tr>
<tr>
<td>Lab</td>
<td>W</td>
<td>5:15-9:15</td>
<td>105 LSC</td>
</tr>
</tbody>
</table>

Course Description: Bioinformatics and how to apply it to biological research. As a lab course emphasis will be on the hands-on use of bioinformatics tools to solve relevant biological problems.

Prerequisite: BIO 326.
Biology 425
Cell & Developmental Biology Laboratory (3 credits)
Pepling

Lec M & 2:15-3:10 214 LSC
Lab W 12:45-4:45 316 LSC

Course Description: Survey of current methods employed in cell and developmental biology studies, including microscopy and imaging techniques, spatial analyses of gene expression, protein expression and localization, cell fractionation, immunocytochemistry. Review of general laboratory methods, data analysis and reporting. **This course satisfies the communication skills requirement.**

Prerequisites: Bio 326 & 327; (Bio 503 or Bio 462 recommended)
Exams & Lab Reports: 4 quizzes and 4 lab reports will be required.
Class size: 24
Frequency of Offering: Every Spring semester

Biology 428
Capstone Seminar in Environmental Sciences (3 credits)
Staff TBA

T 11:00-1:30 435 LSC

Course Description: This is a seminar course for upper-level students, particularly those following the Environmental Science Curriculum (but not limited to) within a Biology or Earth Sciences major. Students will work together to critically evaluate, and propose solutions to, current environmental problems using a combination of reading, class discussion, written analyses and oral presentations. The predominant focus will be conducting independent research projects regarding important environmental problems.

Biology 460
Research in Biology (1-4 credits)
Faculty

Course Description: Bio 460 is intended for Biology Majors who wish to participate in either an experimental laboratory or field research project. Bio 460 replaces the use of independent study or experience credit courses for research purposes. Student research projects will incorporate use of the scientific method, experimentation, data analysis, data presentation and interpretation, and the responsibilities of scientific integrity.

To enroll in Bio 460, the student must seek a sponsor who is willing to direct an appropriate project. Typically, the sponsor will assign the student to some aspect of an existing, larger research project. In consultation with the sponsor, the student will submit a petition with the Department Undergraduate Secretary which states the nature of the project, the expectations regarding time commitment (3 hrs. per week per credit hr.), and the means of evaluation. The student will then be given a waiver to permit enrollment.

The grading procedure for Bio 460 will generally be based on 1) the faculty member’s evaluation of overall student performance, and 2) examination of required laboratory records or notebooks. Evaluation may also include 3) a report written by the student which documents the experience and results in a scientific format. Students can enroll in Bio 460 more than once, but the total credit hours applied to the Biology Major requirements cannot exceed 4 hours.

Biology 461
Experience in Biology (0 credits)
Faculty & R. Raina

Course Description: Internship or work experience supervised by a faculty mentor. Projects may include experimentation, data analysis, presentation, and responsibilities of scientific integrity. Development and analysis of business plans or intellectual property in **biotechnology** focused-companies, agencies or law firms is also possible.

Frequency of Offering: Each semester
Biology 464/664
Applied Biotechnology
(4 credits)
S. Raina

001 Lec MWF 11:40-12:35 126 LSC
002 Lab T 12:30-3:45 206 LSC

Course Description: Biotechnology II is the second course of a two-course Biotechnology series. The first course, Biotechnology I, will be offered in the fall. These courses complement each other, but one is not required for the other.

These courses will introduce students to the molecular and genetic principles and processes involved in biotechnology. Lectures will include topics such as the genetic modification of microbial, plant, & animal cells, forensic biotechnology, and important medical, industrial, agricultural and environmental applications of biotechnology. Labs will cover many of the methods routinely used in biotechnology labs.

This course will address questions such as: What is biotechnology, how is it done, and how is it being used today? How can biotechnology impact lives of humans and other animals, plants, and the environment? What are the issues that biotechnology raises about the role of science and technology in society and ethical issues related to Biotechnology?

Prerequisites: BIO 326 & 327
Class size: 24

*This course will fulfill additional laboratory experience & the communication skills requirement

Biology 465/665
Molecular Biology Lab
(3 credits)

001 Lecture M & W 12:45-1:40 011 LSC
Lab W 12:45-4:45 206 LSC
002 Lecture T & Th 12:30-1:25 214 LSC
Lab Th 12:30-4:30 206 LSC
Raina, S
Raina, R

Course Description: Laboratory will teach basic experimental techniques including DNA isolation, restriction endonuclease cleavage of DNA, gene cloning, tissue culture techniques, construction of transgenic plants, gene expression analysis, and other techniques central to Molecular Biology. This course meets the communications skills requirement.

Prerequisites: BIO 326 & 327
Class size: 24
Frequency of Offering: Each semester

BCM 476
General Biochemistry II
(3 credits)
Chan/Castañeda

MWF 9:30-10:25 105 LSC

Course Description: Biochemistry II is a continuation of Biochemistry I covering: Mechanisms, integration and regulation of intermediary, autotrophic, nitrogen, and energy metabolism. Structure, function and metabolism of carbohydrates, lipids and proteins. The nature and function of subcellular organelles.

Text: Stryer: Biochemistry, 6th ed. (2006). Additional materials relating to specific topics will be provided in class.

Prerequisites: Bio 575 (or equivalent) and one year of organic chemistry.

Exams: Four per semester. No comprehensive final; no make-ups given.

Class size: 45
Frequency of Offering: each Spring semester
Biology 490
- **Independent Study** (1-6 credits)
- **Faculty**

Proposal & permission of instructor required.

Biology 495
- **Distinction Thesis in Biology** (1-3 credits)
- **Segraves/Belote**

Course Description: This course is for students preparing a thesis in partial fulfillment of the requirements for the Distinction in Biology Program. It normally will be taken by Distinction students in the semester prior to graduation.

Biology 499
- **Biology Thesis** (1-3 credits)
- **Faculty**

Writing of a thesis by senior Biology majors.

Biology 501
- **Biology of Cancer** (3 credits)
- **Fondy**

| TTh | 9:30-10:50 | 105 LSC |

Course Description: Clinical features: Extent, effects, epidemiology, pathology, definitions, classifications, and model systems. Basic biology of cancer cells: Growth, biochemical characteristics, progression, invasion, metastasis. Causation: Viral oncogenesis, oncogenes, suppressor genes, apoptosis. Management: Host response, immunology, and immunotherapy. **Acquisition and use of the Turning Point XR transmitter (Not the RF "clicker" or the XR device) required.**

Prerequisites: Either Bio 326 or Bio 327, plus Che 275; or equiv. **Class size:** 108

Biology 503
- **Developmental Biology** (3 credits)
- **Maine/Pepling**

| TTh | 11:00-12:20 | 011 LSC |

Course Description: We will examine the mechanisms that control animal development at the cellular and molecular levels. Topics to be covered include: patterns of early embryonic cleavage and morphogenesis, mechanisms of cellular differentiation, mechanisms of morphogenesis, pattern formation, and the genetic control of development. The course will emphasize the wide variety of experimental approaches used to study different aspects of development. Please note that this is not a descriptive embryology course. Rather, the goal is to provide students with an understanding of developmental mechanisms.

Classes will involve lectures, small group discussions, and general discussions. Readings will be from the textbook and the primary literature.

Textbook: S. Gilbert, Developmental Biology, 10th edition.

Prerequisites: Bio 326 & 327

Class size: 50
Frequency of Offering: Every year
GRADUATE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
<th>Days</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 600/400-001</td>
<td>Seminar in Neurotoxicology</td>
<td>0-3</td>
<td>J. Hewett</td>
<td>TTh</td>
<td>10:35-11:45</td>
<td>214 LSC</td>
</tr>
<tr>
<td>Biology 600/400-004</td>
<td>Food for thought: Brain Bioenergetics</td>
<td>3</td>
<td>Staff</td>
<td>WF</td>
<td>2:15-3:45</td>
<td>126 LSC</td>
</tr>
<tr>
<td>Biology 600/400-007</td>
<td>Evolutionary Genetics</td>
<td>0-3</td>
<td>Friedman</td>
<td>TTh</td>
<td>2:00-3:20</td>
<td>126 LSC</td>
</tr>
<tr>
<td>Biology 600/400-009</td>
<td>Global Change Biology</td>
<td>0-3</td>
<td>Frank/Fridley</td>
<td>WF</td>
<td>2:15-3:35</td>
<td>300 LSC</td>
</tr>
</tbody>
</table>

Course Description:

- **Seminar in Neurotoxicology:** This course will explore the effects of poisons on nervous system function through the primary literature in the field. Discussions, seminars, and writing assignments will address function of the nervous system at the molecular, cellular, and systems levels.

- **Food for thought: Brain Bioenergetics:** Our brains use ~20% of the energy we consume. In this class we will explore how the brain regulates its energy demands. We will also focus on how brain bioenergetics change during neurological disorders like Alzheimer’s and Parkinson’s disease.

- **Evolutionary Genetics:** Complex traits are features whose properties are controlled by many genes and whose inheritance does not follow the simple rules of Mendelian genetics, mostly due to the role of environmental variation in affecting the phenotype. This seminar course will use recent literature and student-led discussions and presentations along with writing assignments to understand the significance of complex traits and explore current methods. Student will learn how genetic and genomic approaches are used to understand the interaction between genotype and environment in producing a phenotype. Topics will range from disease-related traits in humans to plant breeding and agriculture, with model systems ranging from mice to maize.

- **Global Change Biology:** This course will explore the key drivers of global change – global warming, biodiversity and habitat loss, biological invasions, emergent diseases, industrial pollution – and how life on Earth may respond over the next century. The course will rely heavily on readings and open discussion. Students will gain an understanding of the fundamental scientific issues underlying global change and be able to debate pertinent social and political themes within a scientific context.
Biology 600/400-010 Biology of Adaptive Behaviors (3 credits) Gold

TTh 2:00-3:20 105 LSC

Course Description: Behavioral adaptations based on individual experiences give animals the ability to use their pasts to solve new problems, an ability that can be obviously important to an animal's survival. This course will examine behavioral plasticity and the brain mechanisms responsible for the changes in behavior. Interestingly, there appears to be considerable conservation across much of the animal kingdom of basic biological mechanisms that mediate behavioral and brain plasticity. The class will include information that crosses several levels of analysis, from the organism, to brain systems, to neurons, to synapses, to biochemical mechanisms. The class will also consider information about memory dysfunctions as seen in aging, dementia, and retardation in humans and in laboratory model animals such as rats and mice. The format will be lecture/discussion sessions with evaluations of student performance based on participation, writing assignments, and exams.

There are no specific prerequisites for this course. However, prior completion of at least one of the following classes listed is expected: Bio 327 Cell Biology, Bio 326 Genetics, Bio 211 Intro to Neuroscience, Psy 223 Biopsychology, Bio 355 General Physiology.

Biology 607/407 Advanced Neuroscience (3 credits) S. Hewett/J. Hewett/SUNY Faculty

TTh 9:30-10:50 214 LSC

Course Description: An advanced introduction to neuroscience taught at the upper undergraduate or beginning graduate student level. The course spans the anatomy, physiology and chemistry of the nervous system, from the molecular, to the cellular and systems level. Topics include: neurons and electrochemical and biophysical properties of neurons, neurochemistry, sensory and motor systems, neural plasticity and development.

Bio/Che/Phy 638 Open Problems in Soft Interfaces (3 credits) Bowick/Mather

MW 5:15-6:35 414 Bowne

Course Description: A seminar on the critical analysis of the current literature on interfaces, whereby we will define the frontiers of interface research by identifying unsolved problems. Small interdisciplinary groups will scour online databases for “hot” articles or research groups associated with a particular research topic (e.g., biomaterial interfaces relevant to a particular disease or injury; fundamental interface problems in soft matter physics; techniques for patterning surfaces; mechanisms for bacterial biofilm control; novel mechanisms for drug delivery) ultimately selecting a single paper to be pitched to the entire class for in-depth consideration by all. Following this selection, several students will lead the discussion of the article. The class will critically analyze the paper and end with updating a developing list of unsolved problems. This course goes beyond traditional seminar or paper classes by developing appreciation for the process of defining a research project in the context of friendly, interdisciplinary debate that fosters improved scientific communication. Near the end of the course teams will be asked to prepare a concrete research proposal to be refereed by the class. The diverse composition of the teams will challenge the students to find ways of taking advantage of their different expertise and will provide a taste of team grant-writing. Offered every year in the Spring semester.
Biology 664/464
Applied Biotechnology
(4 credits)
S. Raina

<table>
<thead>
<tr>
<th>Section</th>
<th>Type</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 Lec</td>
<td>MWF</td>
<td>11:40-12:35</td>
<td>126 LSC</td>
</tr>
<tr>
<td>002 Lab</td>
<td>T</td>
<td>12:30-3:45</td>
<td>206 LSC</td>
</tr>
</tbody>
</table>

Course Description: Biotechnology II is the second course of a two-course Biotechnology series. The first course, Biotechnology I, will be offered in the fall. These courses complement each other, but one is not required for the other.

These courses will introduce students to the molecular and genetic principles and processes involved in biotechnology. Lectures will include topics such as the genetic modification of microbial, plant, & animal cells, forensic biotechnology, and important medical, industrial, agricultural and environmental applications of biotechnology. Labs will cover many of the methods routinely used in biotechnology labs.

This course will address questions such as: What is biotechnology, how is it done, and how is it being used today? How can biotechnology impact lives of humans and other animals, plants, and the environment? What are the issues that biotechnology raises about the role of science and technology in society and ethical issues related to Biotechnology?

Biology 665/465
Molecular Biology Lab
(3 credits)

<table>
<thead>
<tr>
<th>Section</th>
<th>Type</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 Lecture</td>
<td>M & W</td>
<td>12:45-1:40</td>
<td>011 LSC</td>
</tr>
<tr>
<td></td>
<td>Lab</td>
<td>12:45-4:45</td>
<td>206 LSC</td>
</tr>
<tr>
<td>002 Lecture</td>
<td>T & Th</td>
<td>12:30-1:25</td>
<td>214 LSC</td>
</tr>
<tr>
<td></td>
<td>Lab</td>
<td>12:30-4:30</td>
<td>206 LSC</td>
</tr>
</tbody>
</table>

Course Description: Laboratory will teach basic experimental techniques including DNA isolation, restriction endonuclease cleavage of DNA, gene cloning, tissue culture techniques, construction of transgenic plants, gene expression analysis, and other techniques central to Molecular Biology. This course meets the communications skills requirement.

Biology 688
Biological Literature (1-3 credits)
Faculty

Course Description: This number is used for courses that are essentially tutorials in which a student reviews a specific area in conjunction with a faculty member.

Prerequisites: The content and procedures for evaluation are outlined in a petition to be filed with the department (122 Lyman Hall) to obtain a waiver prior to registration.

Frequency of Offering: every Semester

Biology 690
Independent Study (1-6 credits)
Faculty

Course Description: This number is used for special projects during which graduate students conduct laboratory or field research that is not related to their thesis or dissertation research. In general, a student should not register for Bio 690 supervised by his or her advisor.

Prerequisites: A proposal for Independent Study must be completed (in which the project and procedures for evaluation are described), signed by the supervising professor and taken to 110 LSC to obtain a waiver prior to registration.

Frequency of Offering: every Semester
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 705</td>
<td>Graduate Research Seminars</td>
<td>(0-1 credit)</td>
<td>T 3:30-4:25</td>
<td>106 LSC</td>
</tr>
</tbody>
</table>

Course Description: Students present their thesis or dissertation research and critically evaluate the research presentations of other students. Offered every semester.

Frequency of Offering: every Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 997</td>
<td>Masters Thesis</td>
<td>(0-6 credits)</td>
</tr>
<tr>
<td>Biology 999</td>
<td>Dissertation</td>
<td>(0-15 credits)</td>
</tr>
<tr>
<td>GRD 998</td>
<td>Degree in Progress</td>
<td>(0 credits)</td>
</tr>
</tbody>
</table>

Revised 10/20/14